Vision Transformer - LLM Architecture

Apr 30, 2024·
Junhong Liu
Junhong Liu
· 5 min read

Implementation : My Github

Note: this implementation is based on this Blog, many thanks to the author for sharing.

Vision Transformer (ViT)

ViT - Blogs for reference: Chinese1Chinese2Chinese3Chinese4

ViT - Codes for reference: Github1

ViT - Reference: 《An Image is Worth 16x16 words Transformers for image recognition at scale》

An overview of the ViT model is depicted in below Figure.

ViT1

The standard Transformer receives as input a 1D sequence of token embeddings.

Thus, we need to reshape the 2D image $x \in \mathbb{R}^{H \times W \times C}$ into a sequence of flattened 2D patches $x_p \in \mathbb{R}^{N \times (P^2 \cdot C)}$, where

  • $(H, W)$ is the resolution of the original image,
  • $C$ is the number of channels,
  • $(P, P)$ is the resolution of each image patch,
  • $N = H \cdot W / P^2$ is the resulting number of patches, which also serves as the effective input sequence length for the Transformer.

The Transformer uses constant latent vector size $D$ through all of its layers, so we flatten the patches and map to $D$ dimensions with a trainable linear projection. We refer to the output of this projection as the patch embeddings. $$ z_0 = [x_{class}; x_p^1E; x_p^2E; ...; x_p^NE] + E_{pos}, \quad E \in \mathbb{R}^{(P^2 \cdot C) \times D}, E_{pos} \in \mathbb{R}^{(P^2 \cdot C) \times D} $$

Similar to BERT’s [class] token, we prepend a learnable embedding ($z_0^0 = x_{class}$) to the sequence of embedded patches, whose state at the output of the Transformer encoder ($z^0_L$) serves as the image representation $y$. Both during pre-training and fine-tuning, a classification head is attached to $z^0_L$. The classification head is implemented by a MLP with one hidden layer at pre-training time and by a single linear layer at fine-tuning time. $$ \begin{aligned} z'_l &= MSA(LN(z_{l-1})) + z_{l-1}, \quad &l = 1 ... L \\ z_l &= MLP(LN(z'_l)) + z'_l, \quad &l = 1 ... L \\ y &= LN(z^0_L) \end{aligned} $$

Position embeddings are added to the patch embeddings to retain positional information. We use standard learnable 1D position embeddings, since no significant performance gained by using more advanced 2D-aware position embeddings. The resulting sequence of embedding vectors serves as input to the encoder.

Multihead Self-Attention (MSA)

MSA - Blogs for reference: Chinese1

MSA - Reference: 《Attention Is All You Need》

Transformer

Transformer - Blogs for reference: English1Chinese1Chinese2

Transformer - Codes for reference: Harvard

Transformer - Reference: 《Attention Is All You Need》

Positional Encoding

PE - Blogs for reference: English1Chinese1Chinese2

PE - Codes for reference: Github1

PE - Reference: 《Attention Is All You Need》

Skip Connection (残差连接)

SC - - Blogs for reference: Chinese1

Self-Attention (SA)

SA - Blogs for reference: English1Chinese1


Codes

Reference Blog: Chinese

导入依赖

import torch
from torch import nn, einsum
import torch.nn.functional as F

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

pair函数

def pair(t):
    return t if isinstance(t, tuple) else (t, t)
  • 该函数用于确保返回的数据类型是元组。如果t是元组,返回t;否则返回元组(t, t)
  • isinstance(t, tuple)函数用于判断t是否为tuple(元组)类型的数据实例

PreNorm

class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn

    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)
  • PreNorm类继承自父类nn.Module。详情见Pytorch-nn.Module模块详解
  • **kwargs 是一种灵活传参方式。详情见灵活传递参数
  • 此处需重点理解self.fn(self.norm(x), **kwargs)命令,该命令用于实现以下两个公式: $$ \begin{aligned} z'_l &= MSA(LN(z_{l-1})) + z_{l-1}, \quad &l = 1 ... L \\ z_l &= MLP(LN(z'_l)) + z'_l, \quad &l = 1 ... L \end{aligned} $$

其中,self.norm(x)实现$LN(z_{l-1})$及$LN(z'_l)$操作,并将结果作为输入传入self.fn()所表示的函数;而self.fn()用于实现$MLP()$及$MSA()$操作,即调用下文的FeedForwardAttention函数,其中**kwargs实现灵活传参

  • 如果你对nn.LayerNorm()感到疑惑,参见此博客

MLP

class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout = 0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)
  • 该函数实现多层感知机功能,由线性层、激活函数GRLU和Dropout实现
  • 参数dim表示输入和输出的数据维度
  • 参数hidden_dim表示中间层的维度
  • 参数dropout表示随机抛弃数据的概率,详情参见此Blog

MSA

class Attention(nn.Module):
    def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
        super().__init__()
        inner_dim = dim_head * heads
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head ** -0.5

        self.attend = nn.Softmax(dim = 1)
        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout),
        ) if project_out else nn.Identity()

    def forward(self, x):
        b, n, _, h = *x.shape, self.heads
        qkv = self.to_qkv(x).chunk(3, dim = -1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)

        dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale

        attn = self.attend(dots)

        out = einsum('b h i j, b h j d -> b h i d', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)
  • 该函数用于实现Transformer的核心功能Multi-Head Attention
  • heads表示head的数量
  • dim_heads表示单个head的输出数据的维度
  • 该函数实现公式: $$ Attention(Q, K, V) = softmax(\frac{QK^\mathsf{T}}{\sqrt{d_k}})V $$

Transformer

class Transformer(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
        super().__init__()
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))
            ]))

    def forward(self, x):
        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) + x
        return x
  • 此函数调用其他函数,构建整个Transformer Encoder模块
  • depth表示Transformer Encoder模块的迭代次数,即原文示例图中的参数L

ViT

class ViT(nn.Module):
    def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
        super().__init__()
        image_height, image_width = pair(image_size)
        patch_height, patch_width = pair(patch_size)

        assert image_height % patch_height == 0 and image_width % patch_width == 0

        num_patches = (image_height // patch_height) * (image_width // patch_width)
        patch_dim  = channels * patch_height * patch_width
        assert pool in {'cls', 'mean'}

        self.to_patch_embedding = nn.Sequential(
            Rearrange('b c (h p1)(w p2) -> b (h w)(p1 p2 c)', p1 = patch_height, p2 = patch_width),
            nn.Linear(patch_dim, dim)
        )

        self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
        self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
        self.dropout = nn.Dropout(emb_dropout)

        self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)

        self.pool = pool
        self.to_latent = nn.Identity()

        self.mlp_head = nn.Sequential(
            nn.LayerNorm(dim),
            nn.Linear(dim, num_classes)
        )

    def forward(self, img):
        x = self.to_patch_embedding(img)
        b, n, _ = x.shape

        cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
        x = torch.cat((cls_tokens, x), dim = 1)
        x += self.pos_embedding[:, :(n+1)]
        x = self.dropout(x)

        x = self.transformer(x)

        x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]

        x = self.to_latent(x)
        print(x.shape)

        return self.mlp_head(x)
  • 该函数组合各函数并最终实现ViT算法

  • 在数据送入Transformer模块之前,需经过以下操作:

    $$ z_0 = [x_{class}; x_p^1E; x_p^2E; ...; x_p^NE] + E_{pos}, \quad E \in \mathbb{R}^{(P^2 \cdot C) \times D}, E_{pos} \in \mathbb{R}^{(P^2 \cdot C) \times D} $$
  • positioal embedding 和 class token 由 nn.Parameter()定义。如对该函数感到疑问,请移步参考博客